Chapter 1 Introduction

TXR1017 Series

X-Ray High Voltage Power Supply | 20kV, 20W, Integrated Filament Power Supply, Stability < 0.02%, Compact Size, CE Compliant

- Maximum output voltage is 20kV.
- Stability <0.02% for 8hours
- Ripple < 0.01%p-p
- Integrated adjustable filament power supply
- Voltage and current regulation function
- The emission current can be adjusted remotely.
- Safety interlock function
- Can be customized according to user requirements.
- CECompliant

Product Introduction:

Teslaman TXR1017 series high voltage power supply is a special power supply for small volume X-ray machine. It integrates a filament power supply with an output of 5V DC and an adjustable current of 0.3A to 3.5A. High voltage and filament current can rise steadily. Suitable for thickness measurement of thin films, stability less than 0.02% over 8 hours, significantly enhancing the consistency of thin film thickness measurement equipment.

TXR1017 series power supply can also be connected with potentiometer to realize remote control of output voltage and current, and has the functions of external voltage and current display, safety interlock and so on. You can choose DB9 control or local control or remote digital communication interface to realize RS-232/RS-485 communication or Ethernet ports.

Typical Applications:

Thin film thickness measurement,PCB detection,Liquid level detection,Kevex,Oxford,RTW,Superior,Varian,Trufoc us,Keyiwei and other brands of cathode grounded X-ray tubes.

Specification:

Input	24 VDC ± 10 %.	
Outnut	1kV to 20kV and other maximum output voltages are optional, and the maximum output	
Output	power is 20W. 0 to the highest voltage can be adjusted continuously.	
	Inside the power supply: The multi-turn potentiometer provided with the power supply	
	can set the output voltage between 0 to the highest voltage.	
Voltage Control	External remote control: The external control signal from 0 to 10V can adjust the output	
	from 0 to the highest output voltage.	
	Digital interface (1017i): Set voltage through upper computer software.	
	Inside the power supply: The multi-turn potentiometer of the power supply can set the	
Emission Comment	electron beam current from 0 to the highest current.	
Emission Current	External remote control: The external 0-10V control signal can set the electron beam	
Control	current from 0 to the highest current.	
	Digital interface (1017i): Set current through upper computer software.	
DC Filament Power Constant current output, the output current adjustment range is 0.3A to 3.5A,		
Supply output voltage is limited to 5V.		

Voltage Regulation	Relative load: 0.01% (no load to rated load).	
Rate	Relative input: 0.01% (input voltage change is 1V).	
Cumumt Dogulation	Relative load: 0.01% (no load to rated load).	
Current Regulation Rate	Relative input: 0.01% (input voltage change is 1V).	
Nate	Ripple: under the rated output condition, it is better than 0.1%p-p.	
Ambient	Working time: 0°C to +50°C. Storage: -40°C to +85°C.	
Temperature	Temperature coefficient: voltage and current are better than 25ppm/°C.	
	Stability: less than 0.02% every 8 hours after starting for 0.5 hours.	
Voltage and	0 to +10V representing 0 to reted extract with an armor of 10/	
Current Indication	0 to +10V, representing 0 to rated output, with an error of 1%.	
Overall Dimensions	65mm wide, 115mm high and 150mm deep.	
High Voltage Cable	The standard high-voltage cable is 1m in length outside the power supply, and cannot be	
	plugged and unplugged. Other specifications of high-voltage cables can be customized.	
Weight	about 1.82kg.	
Compliant	CE	

Standard Functions

TXR1017 series provides some standard functions to meet the application and security needs of users. Slow start function of high-voltage output, high-voltage current and filament current: This function enables the high-voltage output, high-voltage current and filament current to rise steadily according to the designed gradient, thus prolonging the service life of the X-ray tube. Usually, this rise time is about 4 seconds, and the filament current will rise slowly until the emission current reaches the required level. When the output is the maximum, this time is usually 4 seconds.

Note: The special slow-start time is subject to the actual indicators.

High-voltage output cable: The standard power supply provides a 1-meter-long high-voltage insulated cable with a high-voltage plug and a ferrule for clamping the output wire at one end. For non-standard power supply, please refer to the relevant schematic diagram and description.

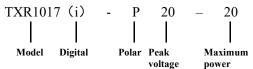
Remote monitoring function

Remote Detection:

Users can connect a voltmeter between pin 2 and pin 9 of the 9-pin terminal JB4 to display the current output voltage value, and connect a voltmeter between pin 5 and pin 9 to display the current output value. See Figure 3.4 for specific wiring.

External Interlock Function:

Interlocking of power output and external signal is realized by connecting pin 8 of 9-pin terminal JB4 with a safety switch. When the INTERLOCK circuit is closed by the safety switch, the output starts to rise steadily. When the INTERLOCK circuit is disconnected, the output is quickly turned off. Interlock circuit can be used as a safety interlock option. But when the safety interlock function is not needed, the safety switch can be replaced by a 0 ohm resistor.


Description of model code

The model code represents the performance and parameters of the power supply. These parameters are:

Maximum output voltage, in kV;

Maximum output power in W (Watt);

Output polarity, p represents positive output and n represents negative output;

TXR1017 Series High-Voltage Power Supply Model Selection Table:

Rating Output		Dower supply model
kV	mA	Power supply model
5	4	TXR1017P5-20
10	1	TXR1017P10-10
20	1	TXR1017P20-20

Analog Port DB9

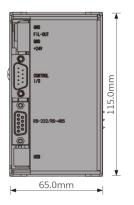
Alla	alog Port DB9		
Pin	Description		
1	+10VDCreferen ce	+10VDC reference voltage	
2	Voltage display	$0 \sim +10 \text{VDC} = 0-100\%$ rated output,Zout= $10 \text{k}\Omega$ (+5VDC optional)	
3	Voltage remote control input	$0 \sim +10$ VDC = 0-100% rated output,Zin=10MΩ.	
4	Voltage local control output	0 ~+10 VDC, potentiometer adjustment	
5	Current display	$0 \sim +10 \text{VDC} = 0-100\%$ rated output, Zout= $10 \text{k}\Omega$ (+5VDC optional)	
6	Current remote control input	$0 \sim 10$ VDC = $0-100\%$ rated output, Zin= 10 M Ω .	
7	Current local control output	0 ~+10 VDC, potentiometer adjustment	
8	External interlock	Grounding = high voltage on	
9	Interlocking return	Ground	

^{*}C0001 standard DB9 port definition

Power Input/Filament Output Interface

Pin	Description	
1	+24VDC input	+24 VDC 10%, maximum current 5A.
2	+24VDC ground	Power supply ground
3	Filament voltage output	+5V 3A, max
4	Ground	Ground

RS-232/RS-485 Digital Communication Port


Pin	Description	Pin	Description
1	NC	6	NC
2	TXD/ send data	7	RS-485B
3	RXD/ received data	8	NC
4	NC	9	RS-485A
5	Ground		

USB Digital Port

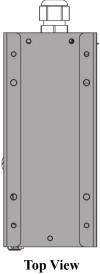
Pin	Description	
1	VBUS	+5VDC
2	D-	Data-
3	D+	Data+
4	Ground	USB ground

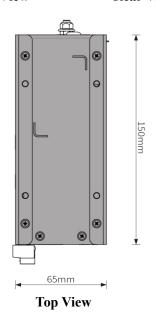
Overall Dimensions: mm

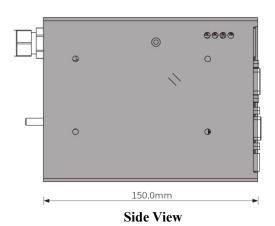
Digital Version

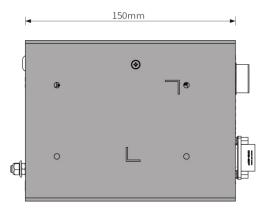
0 HV OUTPUT 65mm

Front View


Rear View


Front View


Simulated Version


Rear View

Side View