第1章 简介

TESC7080 Series

Electrostatic chuck power supply | ±5kV, 20W, 1s polarity switching time

- Bi-polar output, 20ms polarity switchable
- +24V DC input
- Analog/RS-485/Ethernet

Application:

E-Chuck.

- 100nf-10nF/10nF-1nF load detection
- Load detection frequency 10Hz

Information:

Teslaman TESC7080 series electrostatic chuck power supply is suitable for electrostatic chuck semiconductor processing applications. It can provide the required accurate voltage within 10ms and switch polarity within 1s. These customized designs provide protection during the semiconducting process. It can provide ground reference reversible output polarity, as well as floating ground bipolar output with related floating interface. Integrated troubleshooting circuits monitor power functions and transfer state data to the user interface. It adopts a compact and lightweight package and can be OEM.

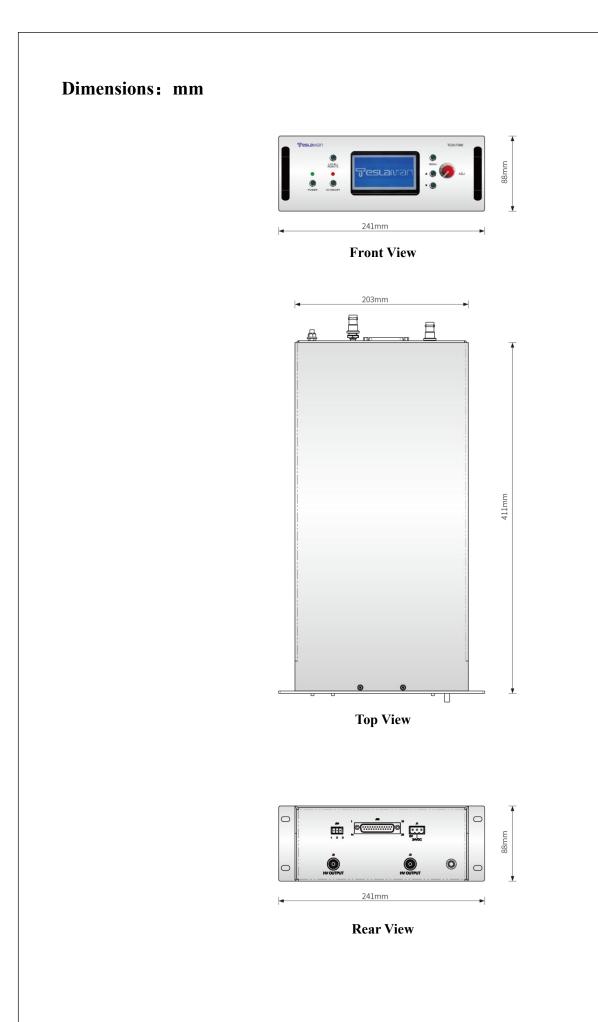
Specifications:

Input			
I. · ·	+24VDC±5%, 5A.		
Output Polarity H	Floating, bi-polar, polarity switchable.		
Output Voltage -	$-5kV \sim +5kV$ each channel continuous adjustable.		
Voltage Accuracy =	$\pm 1\%$ of rated value.		
Ripple	Typical < 100mVp-p.		
Pass zero	Yes.		
Over-shoot	Typical $< 2V$ (when load of 10nf, from -5kV to +5kV)		
Response delay <	<3ms.		
Frequency	0.5Hz.		
Switching time	Typical 20ms (when load of 10nf, from -5kV to +5kV).		
Frequency	Typical 50Hz (when load of 10nf, from -5kV to +5kV).		
Output Impedance >	$>20k\Omega$.		
Valtaga Display	Resolution = 1 V.		
Voltage Display	Accuracy better than ± 50 V.		
Current Display	Resolution = 10μ A.		
	Accuracy = Actual value $\pm 100 \mu A Bias \pm 2\%$.		
Stability	Better than 0.01%.		
Line regulation <	<0.1% when input change within 10%.		
Load regulation <	<1.3% when load from 0 to full load.		
	Input over/less-voltage protection, input over-current protection. Output over-voltage		
	over current and over temperature protection.		
Interface I	DB25 analog(standard), RS-485 series port, USB and Ethernet.		

Control signal	0 corresponds to -5kV, 5V corresponds to 0V, 10V corresponds to +5kV		
	(customizable).		
Typical load capacitance	<10nF(For other capacitance, please contact Teslaman).		
Load detection	<100nF		
Temperature coefficient	Better than 300ppm/°C.		
	Full load <0.1%p-p at maximum output.		
Environmental	Operational: 0°C to 45°C; Storage: -20°C to 70°C.		
Humidity	0 to 85%RH, non-condensing.		
Cooling	Convection.		

Description of Model Code The model code represents the performance and parameters of the power supply, which are: Maximum output voltage in kV;

Maximum output power in W;


Output polarity, PN for bipolar					
TESC7080	PN	5 -	175		
Model	Polarity	Maximum	Maximum		
	1 0141103	Voltage	power		

TESC7080 Series model selection table

Rated output		Model
kV	mA	Widdei
3	4	TECS7080PN3-12
5	2	TECS7080PN5-10
10	3	TECS7080PN10-30

DB25 interface signal description

		al description
PIN	Signal	Signal parameters
1	kV set1	0 to 10VDC = -100% to +100% of
1	KV set1	rated output voltage, Zout =10k Ω
2	kV set2	0 to 10VDC = -100% ot +100% of
	KV SCI2	rated output voltage, Zout =10k Ω
3	GND	Ground (Pin 4) = HV ON
5	GILD	Open = Disable
4	mA mon1	0 to 10VDC = 0 to +100% of rated
		current, Zout =10kΩ.
5	mA mon2	0 to 10VDC = 0 to +100% of rated
		current, Zout =10kΩ.
6	Centre mon	Origin testing
7	HV status	+5V=HV ON, GND=No output
8	+5V	+5V reference
9	ov2 status	+5V=HV2 over-voltage,
-		GND=Normal
10	• • •	+5V=HV2 over-current (value
10	oc2 status	could be set at front panel);
		GND=Normal
11	Wafer	TBD
	status	Connect to GND=Run D-chuck
12	Force discharge	operation, input +5V= no action
13	+10V	+10V reference
	101	0 to 10VDC = -100% to +100% of
14	kV mon1	rated voltage, Zout = $10k\Omega$.
		0 to 10VDC = -100% to +100% of
15	kV mon2	rated current, Zout = $10k\Omega$.
1(mA set1	0 to 10VDC = -100% to +100% of
16		rated current, Zout =10kΩ.
17	mA set2	0 to 10VDC = -100% to +100% of
		rated current, Zout =10kΩ.
18	GND	Analog ground
19	Cap mon	TBD
	Temp status ov1 status	+5V=Power supply
20		over-temperature,
		GND=Normal
21		+5V=HV1 over-voltage, GND=Normal
		+5V=HV1 over-current (value
22	oc1 status	could be set at front panel);
	oci status	GND=Normal
23	GND	Signal ground
	Wafer	
24	detect	TBD
25	HV on	GND= HV ON, +5V=No action
		,

