Research on Broad-Spectrum Sterilization Capability of High Voltage Power Supplies for Irradiation Applications

As a representative non-thermal physical sterilization technology, irradiation sterilization relies fundamentally on the performance of high-voltage power supplies to achieve broad-spectrum microbial inactivation. This study systematically examines the universal effectiveness against bacteria, fungi, and viruses through the lens of power supply engineering. 

1. Physicochemical Basis of Broad-Spectrum Sterilization 
High-voltage power supplies drive electron accelerators to generate 0.5-10MeV electron beams or maintain stable γ-ray fields, inducing DNA/RNA strand breaks and protein denaturation. This process demonstrates equivalent efficacy against Gram-negative bacteria (e.g., E. coli), spores (e.g., Bacillus anthracis), and non-enveloped viruses (e.g., norovirus). Experimental data show 6-8 log reductions in microbial viability at 25kGy irradiation doses. 

2. Technical Adaptability of High Voltage Systems 
1. Energy Spectrum Modulation 
Multistage Marx generators with pulse-forming networks enable precise adjustment of electron beam energy within 0.1-20ms pulse widths. This wide-range output allows deep penetration (20cm frozen meat for Listeria inactivation) and surface treatment (nut products for Salmonella elimination). 

2. Dynamic Load Compensation 
FPGA-based digital control modules maintain beam current stability within ±0.5% under 0-100% sudden load variations, adapting to media densities ranging from 4.5g/cm³ (seafood) to 0.3g/cm³ (puffed snacks). 

3. Hybrid Waveform Output 
Overlapping pulse sequences with DC bias enable simultaneous deep sterilization (high-voltage pulses) and surface passivation (low-voltage sustainment), crucial for fresh produce with complex microbiomes. 

3. Application Scenario Analysis 
| Field            | Target Microorganisms     | Power Parameters       | Inactivation Efficiency | 
|------------------|---------------------------|------------------------|-------------------------| 
| Medical Devices  | Thermophilic spores, Prions | 5MeV/200kW/CW mode     | ≥10⁶ reduction          | 
| Seasonings       | Mold spores, Halophiles   | 3MeV/Pulsed 50Hz       | ≥99.9%                  | 
| Cold Chain       | Listeria, Pseudomonas     | ±5% dynamic regulation | 5-log reduction         | 

Data sources:  

4. Critical Parameters for Broad-Spectrum Performance 
1. Dose Uniformity: Scanning magnets and beam broadening achieve product dose uniformity ratios <1.15 
2. Penetration Depth: 10MeV electrons attain 4.3cm half-value layer in polyethylene 
3. Thermal Management: Recirculating liquid cooling limits temperature rise to ≤2℃/h 

5. Future Directions 
Emerging technologies focus on: ①AI-powered dose prediction models for pathogen-specific energy delivery; ②SiC-based solid-state modulators improving conversion efficiency beyond 92%; ③Programmable electric field topologies for nanoscale pathogen inactivation.