English Translation: Key Technologies for Power Compatibility Design of High-Voltage Dividers

1. Working Principles and Technical Parameters 
High-voltage dividers convert high voltages proportionally via resistive or resistive-capacitive networks: 
$$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \times V_{\text{in}}$$ 
Critical parameters include: 
Ratio & Accuracy: Typical ratio 1000:1, accuracy <0.1% full scale. 
Bandwidth: DC to MHz range for lightning impulse measurement. 
Temp Coefficient: <50ppm/°C to prevent drift. 
Insulation Strength: Input/output isolation withstands multi-times operating voltage. 
2. Power Compatibility Challenges 
Three major interferences: 
1. Conducted Noise: Switching power supply ripple coupled via power lines. 
2. Radiated EMI: High-frequency fields (e.g., inverters) induce common-mode currents. 
3. Ground Loops: Multi-point grounding causes potential differences. 
3. Design Methods for Compatibility 
1. EMI Shielding: 
   Active shielding (copper/aluminum enclosures) attenuates >30dB interference. 
   Single-point grounding for noise suppression. 
   Creepage distance: ≥2m for 100kV. 
2. Filtering & Grounding: 
   π-type LC filters suppress MHz noise. 
   Single-point grounding (<1MHz); Multi-point grounding (>10MHz). 
   Decoupling capacitors (0.1μF per IC). 
3. PCB Layout: 
   4+ layers with dedicated power/ground planes. 
   Avoid sharp traces; No silkscreen or plated holes in HV zones. 
4. Thermal Management: 
   Metal-core substrates for resistors; Derating (components at ≤70% rated voltage). 
4. Validation & Standards Compliance 
Testing: Accuracy (<0.2%), EMC (CISPR 11/IEC 61000-4-5), thermal cycling. 
Long-term Stability: Low-aging materials; Annual calibration. 
Conclusion: Power compatibility requires low-noise transmission, high immunity, and thermal stability. Future applications of SiC/GaN semiconductors will drive dividers toward ultra-wideband and low-latency designs.